Fluorescence Properties of Guard Cell Chloroplasts: EVIDENCE FOR LINEAR ELECTRON TRANSPORT AND LIGHT-HARVESTING PIGMENTS OF PHOTOSYSTEMS I AND II.

نویسندگان

  • E Zeiger
  • P Armond
  • A Melis
چکیده

The presence of chloroplasts in guard cells from leaf epidermis, coleoptile, flowers, and albino portions of variegated leaves was established by incident fluorescence microscopy, thus confirming the notion that guard cell chloroplasts are remarkably conserved. Room temperature emission spectra from a few chloroplasts in a single guard cell of Vicia faba showed one major peak at around 683 nanometers. Low-temperature (77 K) emission spectra from peels of albino portions of Chlorophytum comosum leaves and from mesophyll chloroplasts of green parts of the same leaves showed major peaks at around 687 and 733 nanometers, peaks usually attributed to photosystem II and photosystem I pigment systems, respectively. Spectra of peels of V. faba leaves showed similar peaks. However, fluorescence microscopy revealed that the Vicia peels, as well as those from Allium cepa and Tulipa sp., were contaminated with non-guard cell chloroplasts which were practically undetectable under bright field illumination. These observations pose restrictions on the use of epidermal peels as a source of isolated guard cell chloroplasts. Studies on the 3-(3,4-dichlorophenyl)-1,1-dimethylurea-sensitive variable fluorescence kinetics of uncontaminated epidermal peels of C. comosum indicated that guard cell chloroplasts operate a normal, photosystem II-dependent, linear electron transport. The above properties in combination with their reported inability to fix CO(2) photosynthetically may render the guard cell chloroplasts optimally suited to supply the reducing and high-energy phosphate equivalents needed to sustain active ion transport during stomatal opening in daylight.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A role for PsbZ in the core complex of photosystem II.

Photosynthesis in oxygen-evolving organisms is driven by electron transport through the photochemical reaction centers photosystem I (PSI) and photosystem II (PSII), two large protein complexes located in the chloroplast thylakoid membrane. PSI and PSII each contain an array of light-harvesting antenna pigments that absorb light energy and transfer it to a reaction center core complex, where el...

متن کامل

Photosynthetic Acclimation to Temperature in the Desert Shrub, Larrea divaricata: II. Light-harvesting Efficiency and Electron Transport.

The response of photosynthetic electron transport and light-harvesting efficiency to high temperatures was studied in the desert shrub Larrea divaricata Cav. Plants were grown at day/night temperatures of 20/15, 32/25, or 45/33 C in rough approximation of natural seasonal temperature variations. The process of acclimation to high temperatures involves an enhancement of the stability of the inte...

متن کامل

Photoinhibition of Reaction Centers of Photosystems I and II in Intact Bryopsis Chloroplasts under Anaerobic Conditions.

Illumination of intact Bryopsis corticulans chloroplasts under anaerobic conditions induced a decline of chlorophyll fluorescence and photoinhibition of Photosystems I and II. The time course of the light-induced decline of chlorophyll fluorescence and the decreases of activities of reactions sensitized by Photosystems I and II were compared. Photosystem I activity decreased in parallel with th...

متن کامل

The stoichiometry and antenna size of the two photosystems in marine green algae, Bryopsis maxima and Ulva pertusa, in relation to the light environment of their natural habitat.

The stoichiometry and antenna sizes of the two photosystems in two marine green algae, Bryopsis maxima and Ulva pertusa, were investigated to examine whether the photosynthetic apparatus of the algae can be related to the light environment of their natural habitat. Bryopsis maxima and Ulva pertusa had chlorophyll (Chl) a/b ratios of 1.5 and 1.8, respectively, indicating large levels of Chl b, w...

متن کامل

A Comparison Between Plant Photosystem I and Photosystem II Architecture and Functioning

Oxygenic photosynthesis is indispensable both for the development and maintenance of life on earth by converting light energy into chemical energy and by producing molecular oxygen and consuming carbon dioxide. This latter process has been responsible for reducing the CO2 from its very high levels in the primitive atmosphere to the present low levels and thus reducing global temperatures to lev...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Plant physiology

دوره 67 1  شماره 

صفحات  -

تاریخ انتشار 1981